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By modifying the Fermi updating rule, we present the diversity of individual rationality to the evolutionary
prisoner’s dilemma game, and our results shows that this diversity heavily influences the evolution of coop-
eration. Cluster-forming mechanism of cooperators can either be highly enhanced or severely deteriorated by
different distributions of rationality. Slight change in the rationality distribution may transfer the whole system
from the global absorbing state of cooperators to that of defectors. Based on mean-field argument, quantitative
analysis of the stability of cooperative clusters reveals the critical role played by agents with moderate degree
values in the evolution of the whole system. The inspiration from our work may provide us a deeper compre-
hension toward some social phenomena.
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To understand the observed survival of cooperation
among unrelated individuals in social communities when
selfish actions provide a higher benefit �1,2�, a lot of atten-
tion is being paid to the analysis of evolutionary dynamics of
simple two-player games, such as the prisoner’s dilemma
game �PDG� �3–6�. In the standard form of PDG, each player
may choose either to cooperate, C, or to defect, D, in any one
encounter. If both players choose C, both get a payoff of R;
if one defects while the other cooperates, D gets T, while C
gets S; if both defect, both get P, where T�R� P�S. Pres-
ently, much interest has been given to evolutionary games in
structured population �7–11�, and heterogeneous scale-free
topologies have been recognized as extremely potent pro-
moters of cooperation �12�. Cooperation facilitating mecha-
nisms are also proposed, including strategic complexity �13�,
direct and indirect reciprocitiy �14�, asymmetriy of learning
and teaching activities �15�, individual similarity �16�, ran-
dom diffusion of agents on the grid �17�, dynamic preferen-
tial selection �18�, dynamic payoff matrices �19�, fine-tuning
of noise and uncertainties by strategy adoption �20�, as well
as the interplay between the evolution of cooperation and
that of the interaction network �21�.

This Rapid Communication concentrates on the diversity
of an intrinsic property, individual rationality. Szabó’s Fermi
upgrading rule �22� has taken this vital and intrinsically de-
termined property into account. During the evolution, a
player, i, can follow the strategy of one of its randomly cho-
sen neighbor, j, with the probability depending on their pay-
off difference �Mi−Mj�,

Wij =
1

1 + exp��Mi − Mj�/Ti�
, �1�

where Ti characterizes the level of rationality of agent i,
which has also been viewed as stochastic noise �23� and
related to coherence resonance �24�. Ti=0 denotes complete
rationality, where the individual always adopts the best strat-

egy determinately; while Ti�0, it introduces some irrational
factor, that there is small possibility to select the worse one;
Ti→� denotes that the individual is completely irrational,
and its decision is random. Individual rationality values are
the same for every game player in former works.

However, diversity plays an important role in the dynam-
ics of complex systems, including social systems �25,26�. In
real society, individual rationality is diversely distributed.
Different individual rationality can result in different indi-
vidual behavior. And local network topology largely depends
on individual behavior �21�. Thus in social networks, an
agent’s connectivity may interrelate with its rationality.
Within our study, diversity of rationality is introduced by the
following function �27�:

Ti = NT0
ki

�

�l
kl

�
, �2�

where N is the total number of agents, T0 is the average value
of rationality, and ki is the degree of agent i. A tunable pa-
rameter � determines the relationship between ki and Ti. For
fixed network topology, every particular value of � corre-
sponds to a particular distribution of Ti.

By tuning the single parameter �, Eq. �2� allows to
smoothly pass, first, from proportional to inversely propor-
tional relationships between ki and Ti, and second, from ho-
mogeneous to heterogeneous distributions of Ti �28�. Thus
our model covers various cases, some of which might to
some extent reflect the situations in real world. While ��0,
agents with higher �lower� degree have lower �higher� values
of rationality. ��0 displays the opposite situation. While
�=0, rationality is uniformly �homogeneously� distributed.
For player i, significantly high Ti could induce quite random
behavior although �Mi−Mj� may be large. For example,
when ��0, hubs, the minority in scale-free networks, may
make quite irrational choices. This corresponds to a real
case: there could exist a small number of irrational individu-
als in a very large population. On the contrary, very low Ti
would heavily enhance agent’s sensitivity toward higher pay-
off.

In our model, each node plays the classical PDG with all
nodes connected. Self-interactions are excluded. The total
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payoff of an individual is the sum of the payoffs obtained in
his two-player games with all other connected nodes. We
choose R=1, T=b�1, and S= P=0 �29�. Here the Barabási-
Albert �BA� scale-free network �30� is adopted since a
plethora of biological and social real-world networks are
mostly heterogeneous. It is built from a complete graph with
m0=5 nodes, the number of edges linked to the exiting nodes
from the newly added node in each time step m=2 and the

average degree k̄=4. The total number of agents N=20 000.
Before the start of each game simulation, both strategies
populate the scale-free network uniformly. We adopted a
synchronous updating scheme. All the simulation results
were obtained by averaging over 2000 generations after a
transient time of 10 000 generations. Each data is obtained
by averaging over 50 different network realizations with 20
runs for each realization.

Figure 1 shows the influence of rationality when �=−1, 0,
and 1. As T0 increases, the cooperation level of �=0 de-
creases evidently. But that of �=−1 has little variation, while
that of �=1 drops much more sharply than the case of
�=0. This means the well-known cooperation facilitation
mechanism owe to hubs, as well as cooperative clusters �31�
can be affected by the average rationality and the diversity of
rationality. The robustness of cooperation is sensitive to T0
and can either be greatly enhanced �Fig. 1�a�� or be severely
weakened �Fig. 1�c�� by diversely distributed rationality.

Further information about how �C is affected by different
rationality distributions is provided by Fig. 2. It shows that
�C depends nonmonotonically on �, just as a gorge located in
a plateau. Cooperation is effectively promoted on the plateau
and seriously inhibited in the gorge. Near the gorge, surpris-
ingly, slight distribution change can convert the whole sys-
tem from global absorbing state of cooperators to that of
defectors. It indicates that the evolution of cooperation is
very sensitive to slight difference between the distributions
of rationality. To highlight the intense variation in �C, we call
the gorge: cooperation crisis.

In order to examine how the extent of the heterogeneity of
network topology affects cooperation crisis, we have made
use of the model developed in Ref. �32�, which allows to
smoothly pass from a BA network ��=0� to a random graph
of the sort of Erdős-Rényi �ER� networks ��=1� by tuning a
single parameter �. Showed as Figs. 2�c� and 2�d�, the gorge
still exists, which to some extent indicates the universality of
cooperation crisis. The plateau becomes lower and the gorge
becomes wider in the case that b and � get larger, for coop-
eration is not highly promoted under homogeneous network
topology.

To explain the main features of our findings, especially
the cooperation crisis, we hereafter scrutinize in depth the
microscopic evolution of cooperation. When �=0, heteroge-
neous spatial structure enable the cooperators to form stable
clusters �C clusters�. When ��0, the stability of C clusters
is to be analyzed.

While invaded by defectors, the local structure of a C
cluster can be viewed as a C strategy hub surrounded by a
number of periphery neighbors, most of which are coopera-
tors. Two crucial transient processes corrupt C clusters: pro-
cess �A�: the hub cooperator of a C cluster adopts the strat-
egy of a periphery defector and then transits to D strategy;
process �D�: a periphery cooperator adopts the strategy of the
hub defector and then transits to D strategy. Another two
transient processes consolidate C clusters: process �B�: a hub

FIG. 1. The frequencies of cooperators �c versus the temptation
to defect b at different average rationality value T0=1.0, 12.0, and
60.0 when �a� �=−1, �b� 0, and �c� 1.

FIG. 2. The frequencies of cooperators �C versus �. The average
values of rationality ��a�, �c�, and �d�� T0=1.0 and �b� 60.0.

FIG. 3. The probability of AMDs’ strategies transiting to the
strategies of �a� ALDs, �b� ASDs, and ��c� and �d�� AMDs when
T0=1.0 and b=1.4. The solid squares and empty circles respectively
denote the probabilities of processes �A� and �B� in graphs �a� and
�c�, as well as probabilities of processes �D� and �C� in graphs �b�
and �d�.
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defector adopts the strategy of a periphery cooperator and
then transits to C strategy; process �C�: a periphery defector
adopts the strategy of the hub cooperator of a C cluster and
then transits to C strategy. For a hub, both processes �A� and
�B� could happen; for a periphery agent, both processes �C�
and �D� could happen. According to Eq. �1�, four kinds of
strategy transition probability correspond to these four dy-
namic processes. Based on mean-field approximation, imag-
ing a localized block in the network, agent i is surrounded by
ki neighbors among which the cooperators have a fraction �.
The payoff difference between cooperator i and defector j �or
defector i and cooperator j� can be denoted by ��ki−kjb� �or
��kib−kj��. As the mean-field approximation is not always fit
for the evolutionary games on networks, the following analy-
sis can only be qualitative. From Eqs. �1� and �2�, we gain
the following four kinds of transition probability:

�
Process�A�:

WC→D
H→P =

1

1 + exp���kH − kPb�
T0

�k�/kH
���

Process�D�:
WC→D

P→H =
1

1 + exp���kP − kHb�
T0

�k�/kP
���

Process�B�:
WD→C

H→P =
1

1 + exp���kHb − kP�
T0

�k�/kH
���

Process�C�:
WD→C

P→H =
1

1 + exp���kPb − kH�
T0

�k�/kP
��� ,
	
�3�

where the upper scripts H and P denote hub and periphery

node, respectively. The term �k̄� /k�� remodifies and extends
the Fermi rule. The strategy transition probability in a certain
process can be regarded as the occurrence rate of this pro-
cess. C clusters are unstable if the occurrence rates of pro-
cess �A� �or �D�� are higher than that of �B� �or �C��.

To calculate the four kinds of transition probability, agents
are approximately divided into three classes according to
their connectivity �similar methods see Ref. �33��: �i� Agents

with small values of degree �ASDs�: m�kS� k̄; �ii� Agents

with moderate values of degree �AMDs�: k̄�kM �k�; �iii�
Agents with large values of degree �ALDs�: k��kL�kmax
�k�’s value depends on system size�. Figure 3 shows the strat-
egy transition probabilities of AMDs �the upper scripts S, M,
and L respectively denote ASD, AMD, and ALD�. Sharp
variation can be observed at the region of cooperation crisis
�see Fig. 2�, where process �A� �or �D�� always has larger
occurrence rate than process �B� �or �C��. These indicate the
advantage of the D strategy when one of the two game par-
ticipators is a AMD. Hence C clusters lose their stability. In
our calculation, the BA network has the largest degree kmax
=419 and the smallest degree kS=m=2. The above results
are qualitatively robust to the values of kS, kM, kL, k�, and �.

As an example, here we set the degree of ALDs: kL=150; the
degree of AMDs: kM1=20 and kM2=40; the degree of ASDs:
kS=2; k�=70 and �=0.75.

Figure 4 shows how the rationality values depend on �
for the three classes of agents. The T values of the agents
with smallest �largest� degree monotonously decrease �in-
crease�, while that of agents with other degree values varies
in a nonmonotonous fashion. We should note that at the re-
gion of crisis, peak values of TM are reached. These peaks
nicely explain the large variation in Fig. 3. At this region,
irrational defective AMDs and ALDs are less likely to be
affected by periphery cooperative AMDs and ASDs; irratio-
nal periphery defective AMDs are less likely to be affected
by cooperative AMDs and ALDs. Thereby cluster-forming
mechanism of cooperators loses its efficiency and coopera-
tion crisis occurs. Compared with the case without diversity
of rationality, connected hubs no longer help to form com-
pact C clusters and promote cooperation unless they are suf-
ficiently rational to pursue higher payoff.

Cluster-forming mechanism of cooperators is enhanced
outside of cooperation crisis. On the left side of crisis �see
Fig. 2�, especially when ��0, ALDs and AMDs are ex-
tremely rational. Compared with when �=0, it is much
easier for periphery cooperative ASDs to overturn the defec-
tive ALDs and AMDs, which would then help to form com-
pact C cores. On the right side of crisis, ASDs and AMDs are
rational, but the behavior of ALDs become random, and their
strategy transition probabilities only depend on the propor-
tion of cooperators and defectors connected to them. Once
cooperative ASDs and AMDs take over a defective ALD, its
high payoff would transit nearly all its periphery agents to
cooperators. Then the chance of returning to defective strat-
egy is greatly reduced. These mechanisms promote coopera-
tion due to the heterogeneity of the rationality distributions,
which cannot be affected by T0. Therefore, the robustness of
cooperation is enhanced even if T0 is significantly high �see
Figs. 1 and 2�. Notably, while most works emphasize the role
of hubs �ALDs� for promotion of cooperation �12,26,31�,
here we find that rational AMDs are of great importance.

To sum up, by modifying the Fermi updating rule, we
introduce the diversity of individual rationality to evolution-
ary games, and our results reveal that this diversity heavily
influences the emergence of cooperation. Cluster-forming
mechanism of cooperators can either be highly enhanced or
severely deteriorated by different distributions of rationality
�even slightly different�.

The crucial contribution made by AMDs may provide
some sociological inspiration. If we could analogize agents’
degree to certain social rank, then AMDs might be related to
the middle class, which could serve as a social stabilizer,

FIG. 4. The rationalities of different degree agents TS, TM, and
TL versus � when T0=1.0.
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pointed out by Huntington �34�. However, middle class can
also play subversive role, argued by Huntington’s opponents.
Society is an open complex system; then social properties
of individuals and their distributions could be influenced by
various factors, such as economical or political. Probably,
since the organization of society largely depends on the
emergence of cooperation �35–37�, such two contrary effects
could be relevant to the various rationality modes of middle
class, which correspond to different sorts of rationality dis-
tributions as have been shown in our work. Further investi-
gation on the diversity of rationality under various network

topologies, as well as the coevolution with the game dynam-
ics, might yield new insights toward complex social phenom-
ena.
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